X(z) denotes z-transform of x[n]
\[X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \]

X(\omega) denotes the DTFT of x[n]
\[X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \]

u[n] is the unit step, \(\delta[n] \) is the unit sample
\(\omega \) denotes frequency in rad/sample

Circle the Best Answer

Show All Work Even For Multiple Choice

1. The system with z-transform \(H(z) = \frac{z^2 + 1}{(z+0.7)(z+0.9)} \) and ROC \(|z|<0.7\) is BIBO stable.
 a) True
 b) False

2. The system \(H(z) = \frac{z^2 - 1}{(z+0.1)(z+1.2)} \) with ROC \(0.1 < |z| < 1.2 \) has \(h[n] \) that is
 a) BIBO stable and right-sided
 b) BIBO stable and two-sided
 c) BIBO unstable and two-sided
 d) none above

3. The z-transform of \(\delta[n-1] + 0.5 \delta[n-2] \) is
 a) \(z + 0.5 z^{-2}; \ |z|>0.25 \)
 b) \(z^2 - 0.5 z; \ |z|>0 \)
 c) \(z^{-1} + 0.5 z^{-2}; \ |z|>0 \)
 d) none above

4. If a system has \(H(z) = \frac{10z^3 - 5z - 3}{30z^4 - 6z^3} \) and ROC \(|z|>0.2\) then, then \(h[1] = \)
 a) 0
 b) -5/18
 c) -1/6
 d) 1/6
 e) 2
 f) none above

5. One of the zeroes of the z-transform \(H(z) = 1 - z^4 \) is at \(z = \)
 a) \(e^{j\pi/2} \)
 b) \(e^{j\pi/4} \)
 c) \(e^{-j\pi/8} \)
 d) \(e^{j\pi/8} \)
 e) none above
6. The z-transform of \(h[n] = u[n-1] - u[n-2] \) is \(H(z) = \)
 a) \(z^{-1} - z^{-2} ; \quad |z|>0 \)
 b) \(\frac{z^2 - z^{-2}}{1 - z^{-1}} ; \quad 1<|z|<4 \)
 c) \(z^{-1} ; \quad |z|>0 \)
 d) none above

7. The z-transform of \(h[n] = (1/2)^{2n} u[n-1] \) is \(H(z) = \)
 a) \(\frac{4z}{z-1/4} ; |z|>1/4 \)
 b) \(\frac{1}{4z-1} ; |z|>1/4 \)
 c) \(\frac{z^{-1/2}}{z-1/2} ; |z|>1/2 \)
 d) none above

8. A system with z-transform \(H(z) = \frac{z^2-1}{z(z+0.01)(z-0.01)} ; \quad |z|>0.01 \) would be best described as
 a) lowpass
 b) highpass
 c) bandpass

9. If a filter has \(H(z) = \frac{z^2-0.9}{z^3-0.1} \) and ROC \(|z|>\sqrt{0.1} \), then the first 3 points of \(h[n] = \)
 a) \{1, 0, 0\}
 b) \{1, 0, 1\}
 c) \{0, 1, 0\}
 d) \{1, 0, -0.8\}
 e) none above

10. If a filter has \(H(z) = \frac{z^2-1/2}{z^2-1/4} \) ; ROC \(|z|>0.5 \), then the dc response of the filter is \(H(\omega)|_{\omega=0} = \)
 a) 1/3
 b) 1/4
 c) -1/4
 d) 2/3
 e) none above

11. The frequency of the signal \(h[n] = j^n \) in radians/sample is \(\omega = \)
 a) 0
 b) 1
 c) \(\pi/4 \)
 d) \(\pi/2 \)
 e) \(\pi \)
 f) none above
12. If a filter has \(H(z) = \frac{z^2 + 4z + 4}{9z^2 + 6z + 1} \); \(|z|>1/3\), then response of the filter at \(\omega = \pi \) is
 a) -1/4
 b) 1/2
 c) 1/4
 d) -1/2
 e) none above

13. If \(H(z) = \frac{1}{z} + \frac{z}{2z+1} \); \(|z|>1\), then the zeroes of \(H(z) \) are at \(z = \)
 a) 1, -1
 b) -1/4, -1
 c) 1/4, 0
 d) -1, -1
 e) none above

14. If \(H(z) = \frac{2z}{z+1/2} + \frac{8z}{4z-1} \); \(|z|>1/2\), then \(h[n]= \)
 a) \((1/8)^n u[n]\)
 b) \((4(1/2)^n u[n] + (4(1/4)^n u[n] \)
 c) \(2(-1/2)^n u[n] + (1/4)^n u[n] \)
 d) \(2(-1/2)^n u[n] + 2(1/4)^n u[n] \)
 e) none above

15. If a filter has impulse response \(h[n] = (1/3)^{n-1} u[n-1] \), the dc response of the filter is \(H(\omega)|_{\omega=0} = \)
 a) 0
 b) \(0.5e^{-j2\omega}\)
 c) 1.5
 d) 2
 e) none above

16. If a filter has impulse response \(h[n] = u[n-1] - u[n-5] \), the filter response at frequency \(\omega = \pi/2 \) is \(H(\omega)|_{\omega=\pi/2} = \)
 a) 0
 b) \(e^{-j4}\)
 c) \(j4\)
 d) \(4e^{-j\pi/2}\)
 e) none above

17. A filter with \(H(z) = \frac{z^2 + 4z + 1}{z^2 + 4} \); with ROC \(|z|<2\) is causal.
 a) True
 b) False

18. If \(H(z) = \frac{2z^2 - 2z}{z^2 + 1/9} \), then the poles of \(H(z) \) are at \(z = \)
 a) 1/3, -1/3
 b) j3, -j3
 c) 1/3, j/3
 d) j/3, -j/3
 e) none above
For the following questions:

\[H(z) = \frac{z^2 - 1/16}{z^2 + 1/4} \]

19. Sketch the poles and zeroes in the figure above.

20. Assuming a causal system, sketch the region convergence in the figure above.

Show your work for the 2 above problems in the space below.