Problem 1

Engineering Mathematics
P2: The Z-transform

\[X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} \]

\[X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \]

\[u[n] \text{ is the unit step, } \delta[n] \text{ is the unit sample} \]

\[\omega \text{ denotes frequency in rad/sample} \]

Circle the Best Answer
Show All Work Even For Multiple Choice

1. The right-sided sequence \(h(n) \) with z-transform \(H(z) = \frac{2z-1}{z^2+3z+2} \) is BIBO stable.

 a) True
 b) False

2. If a filter has \(H(z) = \frac{z^2+2z-2}{4z^2-1} \); \(|z|>1/2\), then the dc response of the filter at \(\omega=0 \) is

 a) 0
 b) 1/5
 c) 1/3
 d) 1/2
 e) none above

3. The ROC \(0.7 < |z| < 1.1 \) could be associated with a BIBO stable 2-sided sequence.

 a) True
 b) False

4. If \(H(z) = \frac{z^2-z/3-1/2}{z^2/4-1/16} \), then the poles of \(H(z) \) are at \(z= \)

 a) \(j/4, -j/4 \)
 b) \(j/2, -j/2 \)
 c) \(1/2, -1/2 \)
 d) none above

5. One of the zeroes of the z-transform \(H(z) = 1 + z^{-3} \) is at \(z= \)

 a) \(e^{j\pi/2} \)
 b) \(e^{j3\pi/8} \)
 c) \(e^{-j\pi/3} \)
 d) \(e^{j5\pi/4} \)
 e) none above
6. The z-transform of \(h[n] = \delta[n-1] - \frac{1}{4} \delta[n-3] \) is \(H(z) = \)

a) \(1 + 4z^{-3} \); \(|z| > 0.25\)
b) \(\frac{z^2 - 4}{z^3} \); \(|z| > 0\)
c) \(\frac{4z^2 - 1}{4z^3} \); \(|z| > 0\)
d) none above

7. The z-transform of \(h[n] = (1/2)^{n-1} u[n] \) is \(H(z) = \)

a) \(\frac{2z}{z - 1/2} \); \(|z| > 1/2\)
b) \(\frac{2}{2z - 1} \); \(|z| > 1/2\)
c) \(\frac{1}{2z - 1} \); \(|z| > 1/2\)
d) none above

8. The system with z-transform \(H(z) = \frac{(z+1)}{z^2 + 0.0001} \); \(|z| > 0.01\) would be best described as

a) lowpass
b) highpass
c) bandpass

9. If a filter has \(H(z) = \frac{z^3 - 2z^2 - 1.9}{z^3 + 0.1} \) and ROC \(|z| > 0.1^{1/3}\), then the first 3 points of \(h[n] = \)

a) \(\{1, -2, 1.9\} \)
b) \(\{1, 0, -2.0\} \)
c) \(\{0, 1, -2.0\} \)
d) \(\{1, -2, 0\} \)
ed) none above

10. The z-transform of \(u[n] - u[n-3] \) is

a) \(1 - 2z^{-1} - 3z^{-2} \); \(|z| > 1/5\)
b) \(z^{-1} + z^{-2} \); \(|z| > 0\)
c) \(1 - z^{-1} - z^{-2} \); \(|z| > 0\)
d) none above

11. If a system has \(H(z) = \frac{5z-1}{16z^2 + 1/16} \) and ROC \(|z| > 1/16\) then, then \(h[1] = \)

a) -16
b) 5/16
c) 5
d) 16
e) none above
12. If a filter has impulse response \(h[n] = u[n] - u[n-4] \), the filter response at frequency \(\omega = \pi \) is \(H(\omega) \big|_{\omega=\pi} = \)
 a) -1
 b) \(e^{-j\pi} \)
 c) 1
 d) j
 e) none above

13. If a filter has \(H(z) = \frac{z^2-z/3-1/2}{z^2+z/6-1/6} \); \(|z|>1/2 \), then response of the filter at \(\omega = \pi \) is
 a) 0
 b) -1/6
 c) 3/4
 d) 5/4
 e) none above

14. If \(H(z) = \frac{5}{z+1/2} + \frac{1}{z-1/2} \); \(|z|>1 \), then the zero of \(H(z) \) is at \(z = \)
 a) 1/3
 b) 1/4
 c) 1/2
 d) 1
 e) none above

15. If \(H(z) = \frac{8z}{2z+1} \); \(|z|>1/2 \), then \(h[n] = \)
 a) \((1/8)^n u[n] \)
 b) \(4(-1/2)^n u[n] \)
 c) \(2(-1/2)^n u[n] \)
 d) \(8(1/2)^n u[n] \)
 e) none above

16. If a filter has impulse response \(h[n] = (1/5)^{n-1} u[n-1] \), the dc response of the filter is \(H(\omega) \big|_{\omega=0} = \)
 a) 5/4
 b) 5/6
 c) 4/5
 d) 0.2e^{-j2\omega}
 e) none above

17. A filter with \(H(z) = \frac{z^2+4z+1}{z^2+1/4} \); with ROC \(|z|>1/2 \) is
 a) unstable
 b) left-sided
 c) two-sided
 d) causal
 e) none above

18. If \(Y(z) = 1+z^{-1}; |z|>0 \), and \(X(z) = 1+z^{-1}; |z|>0 \), then the convolution \(x[n] \ast y[n] = \)
 a) \(\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] \)
 b) \(\delta[n] + 2\delta[n-1] + \delta[n-2] \)
 c) \(\delta[n-1] + \delta[n-2] \)
 d) none above
For the following questions:

\[H(z) = \frac{z^2 + 1/4}{z^2 + z/2 + 1/16} \]

19. Sketch the poles and zeroes in the figure above.

20. Assuming a causal system, sketch the region convergence in the figure above.

Show your work for the 2 above problems in the space below.