\qquad

Electrical and Computer Engineering Fall 2023 BREADTH EXAM

Problem 1 Engineering Mathematic P1: Differential Equations

Problem 1 (25 points total) - (20 pts) Solve this ordinary differential equation, $y^{\prime}+\mathrm{y}=5 \cos (t)$, for $y(t)$, with $y(0)=1$; Discuss qualitatively the behavior at large $t(5 p t s)$. Does the large t behavior depend on the initial condition $y(0)$?

Problem 2 (35 points) - Solve equation $y^{\prime \prime}+\lambda y=0$ for $y(x)$, with $y(0)=y(1)=0$. Determine the allowed values of the parameter λ for non-trivial solutions (i.e., non-zero solution) of $\mathrm{y}(\mathrm{x})$.
Normalize the solution: $\int_{0}^{1} y^{2} d x=1$. Note that this problem seeks for standing wave solutions with two end points at $\mathrm{x}=0$ and $\mathrm{x}=1$.

Problem 3 (40 points total) - If the undamped harmonic oscillator is applied an extra oscillating force so that the equation to solve is $\mathrm{md}^{2} \mathrm{x} / \mathrm{dt}^{2}=-\mathrm{kx}+\mathrm{F}_{\text {ext }}(\mathrm{t})$, where the external force is $\mathrm{F}_{\text {ext }}(\mathrm{t})=$ $F_{0} \cos \left(\omega_{0} t\right), F_{0}$ is a constant, and $k / m=\omega^{2}$. Assume that $\omega_{0} \neq \omega=\sqrt{ }(\mathrm{k} / \mathrm{m})$. (25 pts) Find the solution $\mathrm{x}(\mathrm{t})$ with the initial conditions $\mathrm{x}(0)=0$. Discuss three special cases: 1$\left.)(5 \mathrm{pts}) \omega_{0}=0 ; 2\right)$ $\left.(5 \mathrm{pts}) \omega_{0} \gg \omega ; 3\right)(5 \mathrm{pts}) \mathrm{t}$ is small with an arbitrary ω_{0} (i.e., showing the leading t -dependent term in the general solution). In each case explain the underlying physics.

