\qquad

Department of Electrical and Computer Engineering

Fall 2023 COMPREHENSIVE/BREADTH EXAM

Questions 2/3/4 TTG Area: Comm., Sig. Proc, Ctrls ECGR-4123: Analog and Digital Communications

Unless otherwise noted:
$F\left\}\right.$ denotes Fourier ; $F^{-1}\{ \}$ denotes inverse Fourier transform ω denotes frequency in rad/second, f denotes frequency in Hz

* denotes convolution and $x^{*}(t)$ denotes the conjugate of $x(t)$
$\Delta(\mathrm{t})$ denotes triangle function of width 1 and height 1 centered at $\mathrm{t}=0$ $u(t)$ is unit step

Circle the Best Answer

Show All Work Even For Multiple Choice

1. To avoid aliasing, the signal $g(t)=\cos (1000 \pi t)+\sin (3000 \pi t)$ should be sampled at a rate greater than
a) 1 kHz
b) 2 kHz
c) 3 kHz
d) 4 kHz
e) none above
2. The dc response of a system with impulse response $\mathrm{h}(\mathrm{t})=2 \delta(\mathrm{t}-1)-\delta(\mathrm{t}-2)$ is $\left.\mathrm{H}(\omega)\right|_{\omega=0}=$
a) $-1 / 2$
b) 0
c) 1
d) 2
e) none above
3. The instantaneous frequency of $\cos \left(4 t^{2}\right)$ at $t=3$ is
a) $6 \pi \mathrm{rad} / \mathrm{s}$
b) $6 \mathrm{rad} / \mathrm{s}$
c) $24 \mathrm{rad} / \mathrm{s}$
d) $48 \mathrm{rad} / \mathrm{s}$
e) none above
4. The Fourier transform of $x(t)=\delta(t)-3 \delta(t-3)$ is $X(\omega)=$
a) $\delta(\omega)-2 e^{-j 3 \omega}$
b) $1 /\left(1-2 \delta(\omega) \mathrm{e}^{\mathrm{j} 3 \omega}\right)$
c) $1-3 e^{-\mathrm{j} 3 \omega}$
d) $\delta(\omega)-2$
e)none above
5. A signal $g(t)=2 \cos \left(\omega_{0} t\right) \cos \left(\omega_{m} t\right)$ with $\omega_{0}=10^{6}$ and $\omega_{m}=10^{3}$ is best described as
a) VSB
b) SSB
c) DSB-SC
d) AM (DSB-LC)
6. The bandwidth of the signal $g(t)=\{\cos (100 \pi t)+\sin (200 \pi t)\} \cos (1000 \pi t)$ is
a) 25 Hz
b) 50 Hz
c) 100 Hz
d) 200 Hz
e) none above
\qquad
7. The power of a signal $g(t)$ with autocorrelation $\operatorname{Rg}_{g}(\tau)=\Delta(\tau / 5)+\Delta(\tau / 2)$ is
a) 2
b) 4
c) 7
d) 14
e) none above
8. If a full-scale sinusoid of 21 KHz is sampled by a 9-bit analog-to-digital-converter at a rate of 64,000 samples/second, the signal-to-quantization-noise ratio is:
a) 49.8 dB
b) 55.8 dB
c) 61.8 dB
d) 73.8 dB
e) none above
9. Given a frequency modulated signal $g(t)=5 \cos \left(\omega_{0} t+5 \cos \left(\omega_{m} t\right)\right)$ with carrier frequency $\omega_{0}=1000$ and modulation frequency $\omega_{m}=5$, the bandwidth using Carson's rule is
a) $5 \mathrm{rad} / \mathrm{s}$
b) $60 \mathrm{rad} / \mathrm{s}$
c) $120 \mathrm{rad} / \mathrm{s}$
d) $1005 \mathrm{rad} / \mathrm{s}$
e) none above
10. The bandwidth of $Q A M$ signal $g(t)=\cos (200 \pi t) \sin (4000 \pi t)+\cos (50 \pi t) \cos (4000 \pi t)$ is
a) 100 Hz
b) 200 Hz
c) 400 Hz
d) 2100 Hz
e) none above
11. For a DSB-SC signal with $g(t)=8 \cos (100 \pi t) \sin (3000 \pi t)$, the power P_{g} of the signal $g(t)$ (assume a 1-ohm system) is
a) 8 W
b) 12 W
c) 16 W
d) 32 W
e) none above
12. For the bandpass signal having Fourier transform $G(\omega)$ shown below, the 6 dB bandwidth is
a) $100 \mathrm{rad} / \mathrm{s}$
b) $200 \mathrm{rad} / \mathrm{s}$
c) $400 \mathrm{rad} / \mathrm{s}$
d) $800 \mathrm{rad} / \mathrm{s}$
e) none above

\qquad
13. The frequency modulated signal $g(t)=50 \cos \left(\omega_{0} t+4 \cos \left(\omega_{m} t\right)\right)$ with carrier frequency $\omega_{0}=100,000$ and modulation frequency $\omega_{m}=5,000$ is a wideband $F M$ signal.
a) True
b) False
14. Given a phase modulated signal $g(t)=5 \cos \left(\omega_{0} t+0.6 \cos \left(\omega_{m} t\right)\right)$ with carrier frequency $\omega_{0}=100,000$ and modulation frequency $\omega_{m}=3$, the peak phase deviation is
a) 0.2 rad
b) 0.6 rad
c) 2 rad
d) 1.8 rad
e) none above
15. A random voltage between -2 and 3 volts, with uniform distribution, has a mean voltage of
a) 0
b) 1
c) 2
d) 3
e) none above
16. The output of a system is $y(t)=x^{3}(t)$, where $x(t)$ is the input. If $x(t)=3 \cos (20 \pi t)+\sin (40 \pi t)$, then the highest frequency component of $y(t)$ is
a) 20 Hz
b) 40 Hz
c) 60 Hz
d) 80 Hz
d) None above
17. The second central moment of a random voltage between -1 and 1 volts, with uniform distribution, is
a) $1 / \sqrt{12}$
b) $1 / 12$
c) $1 / 6$
d) $1 / 3$
e) none above
18. For signal having power spectral density $S_{g}(\omega)$ below, the signal power $P_{g}=$
a) $20 / \pi$
b) $40 / \pi$
c) $60 / \pi$
d) $80 / \pi$
e) none above

\qquad

The following questions refer to the above modulator which has an ideal lowpass filter F1 with bandwidth $10 \mathrm{rad} / \mathrm{s}$, and an ideal bandpass filter F2 with bandwidth $20 \mathrm{rad} / \mathrm{s}$ at a center frequency of $40 \mathrm{rad} / \mathrm{s}$. The spectrum of $\mathrm{m}(\mathrm{t})$ is shown above.
19. Sketch the magnitude of the spectrum, $|\mathrm{X} 2(\omega)|$.

20. Sketch the magnitude of the output spectrum, $|Y(\omega)|$.

