Department of Electrical and Computer Engineering								
Fall 2023 COMPREHENSIVE/BREADTH EXAM								
	Questions 2/3/	Questions 2/3/4 TTG Area: Comm., Sig. Proc, Ctrls				ECGR-4123: Analog and Digital		
						Con	munica	tions
Unless otherwise noted: F {} denotes Fourier ; F^{1} {} denotes inverse Fourier transform ω denotes frequency in rad/second, f denotes frequency in Hz * denotes convolution and x [*] (t) denotes the conjugate of x(t) Δ (t) denotes triangle function of width 1 and height 1 centered at t= u(t) is unit step						$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t} dt$ =0 $g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega)e^{j\omega t} d\omega$		
<u>Circle</u> the Best Answer <u>Show All Work Even For Multiple Choice</u>								
1.	. To avoid aliasing, the signal $g(t) = \cos(1000\pi t) + \sin(3000\pi t)$ should be sampled at a rate greater than							
	a) 1 kHz	b) 2	2 kHz	c) 3 kl	Ηz	d) 4 I	κHz	e) none above
2.	The dc response of a system with impulse response h(t)= $2\delta(t-1) - \delta(t-2)$ is H(ω) $_{\omega=0}$ =							
	a) -1/2	b) 0	c) 1	d) 2	(e) none abo	ve	
3.	The instantane a) 6π rad/s	eous frequen b) 6 rad/s	cy of cos(4 s c)	t²) at t=3 i 24 rad/s	s d) 48	8 rad/s	e) no	ne above
4. The Fourier transform of x(t)= $\delta(t)$ - $3\delta(t-3)$ is X(ω) =								
	a) δ(ω) - 2e ⁻	j ^{3ω} b)	1/(1– 2δ(ω)	e ^{j3∞})	c) 1 - 3	e ^{-j3ω} d) δ(α	v) - 2	e)none above
5. A signal g(t) = 2 cos(ω_0 t) cos(ω_m t) with ω_0 =10 ⁶ and ω_m =10 ³ is best described as								
	a) VSB	b) SSB	c)	DSB-SC		d) AN	I (DSB	-LC)
6.	The bandwidth	of the signa	ll g(t) = { cos	s(100π t) +	sin(200	π t) } cos(1	000π t) is

b) 50 Hz c) 100 Hz d) 200 Hz e) none above

a) 25 Hz

Control Number:_____

7. The power of a signal g(t) with autocorrelation $R_g(\tau) = \Delta(\tau/5) + \Delta(\tau/2)$ is

a) 2 b) 4 c) 7 d) 14 e) none above

8. If a full-scale sinusoid of 21 KHz is sampled by a 9-bit analog-to-digital-converter at a rate of 64,000 samples/second, the signal-to-quantization-noise ratio is:

a) 49.8 dB b) 55.8 dB c) 61.8 dB d) 73.8 dB e) none above

9. Given a frequency modulated signal $g(t) = 5 \cos(\omega_0 t + 5 \cos(\omega_m t))$ with carrier frequency ω_0 =1000 and modulation frequency ω_m =5, the bandwidth using Carson's rule is

a) 5 rad/s b) 60 rad/s c) 120 rad/s d) 1005 rad/s e) none above

10. The bandwidth of QAM signal $g(t) = \cos(200\pi t) \sin(4000\pi t) + \cos(50\pi t) \cos(4000\pi t)$ is

a) 100 Hz b) 200 Hz c) 400 Hz d) 2100 Hz e) none above

- 11. For a DSB-SC signal with $g(t)=8 \cos(100\pi t) \sin(3000\pi t)$, the power P_g of the signal g(t) (assume a 1-ohm system) is
 - a) 8 W b) 12 W c) 16 W d) 32 W e) none above

12. For the bandpass signal having Fourier transform $G(\omega)$ shown below, the 6 dB bandwidth is

a) 100 rad/s b) 200 rad/s c) 400 rad/s d) 800 rad/s e) none above

- 13. The frequency modulated signal $g(t) = 50 \cos(\omega_0 t + 4 \cos(\omega_m t))$ with carrier frequency $\omega_0=100,000$ and modulation frequency $\omega_m=5,000$ is a wideband FM signal.
 - a) True b) False
- 14. Given a phase modulated signal $g(t) = 5 \cos(\omega_0 t + 0.6 \cos(\omega_m t))$ with carrier frequency $\omega_0=100,000$ and modulation frequency $\omega_m=3$, the peak phase deviation is
 - a) 0.2 rad b) 0.6 rad c) 2 rad d) 1.8 rad e) none above
- 15. A random voltage between -2 and 3 volts, with uniform distribution, has a mean voltage of
 - a) 0 b) 1 c) 2 d) 3 e) none above
- 16. The output of a system is $y(t) = x^{3}(t)$, where x(t) is the input. If $x(t)=3\cos(20\pi t) + \sin(40\pi t)$, then the highest frequency component of y(t) is
 - a) 20 Hz b) 40 Hz c) 60 Hz d) 80 Hz d) None above
- 17. The second *central* moment of a random voltage between -1 and 1 volts, with uniform distribution, is
 - a) 1/√12 b) 1/12 c) 1/6 d) 1/3 e) none above
- 18. For signal having power spectral density $S_g(\omega)$ below, the signal power P_g =

The following questions refer to the above modulator which has an ideal lowpass filter F1 with bandwidth 10 rad/s, and an ideal bandpass filter F2 with bandwidth 20 rad/s at a center frequency of 40 rad/s. The spectrum of m(t) is shown above.

19. Sketch the magnitude of the spectrum, $|X2(\omega)|$.

20. Sketch the magnitude of the output spectrum, $|Y(\omega)|$.

