Breadth Exam- Fall 2023

ECGR 4124

Quiz Instructions

	4 pts
An LTI system has impulse response defined by $h\left[n ight]=~$ {5, -3, 6} for $n=\{0,$	1,2}.
Determine the output of the system, $y\left[n ight]$, when the input, $x\left[n ight]=A\delta\left[n ight]$ for	r A =-1.
Provide a single number as your answer which is the total of the values of t	he output, i.e., $\sum_{-\infty}^{\infty}y\left[n ight]$.
Question 2	3 pts
What are the components one would typically need to construct a digital signal pro	ocessing system that could
What are the components one would typically need to construct a digital signal protake analog signals as input and also output the processed results as an analog s	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protake analog signals as input and also output the processed results as an analog s (Choose all that apply)	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protake analog signals as input and also output the processed results as an analog s (Choose all that apply)	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protake analog signals as input and also output the processed results as an analog s (Choose all that apply) Capacitor Resistor	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protected analog signals as input and also output the processed results as an analog s (Choose all that apply) Capacitor Resistor CPU	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protected analog signals as input and also output the processed results as an analog s (Choose all that apply) Capacitor Resistor CPU op amp	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protected analog signals as input and also output the processed results as an analog s (Choose all that apply) Capacitor Resistor CPU op amp analog to digital converter	ocessing system that could signal?
What are the components one would typically need to construct a digital signal protake analog signals as input and also output the processed results as an analog s (Choose all that apply) Capacitor Resistor CPU op amp analog to digital converter digital to analog converter	ocessing system that could signal?

Question 3

Question 5 3 pts

How many signals listed below are periodic?

$$egin{aligned} x\left[n
ight]&=\siniggl(rac{6\pi}{7}n+1iggr)\ x\left[n
ight]&=\cosiggl(rac{n}{8}-\piiggr)\ x\left[n
ight]&=\cosiggl(rac{\pi}{8}n-rac{\pi}{3}iggr)\ x\left[n
ight]&=1 \end{aligned}$$

Note: Constants DO repeat their values.

⊖ 3	
○ 1	
○ 0	
○ 4	

Question 6		5 pts

If
$$z_1 = 1 - j 2\omega$$
 and $z_2 = 2 + j 4\omega$ simplify the ratio $\frac{z_1}{z_2^*}$ where $*$ denotes conjugation.
 $\bigcirc \frac{\sqrt{5}}{2\sqrt{2}}e^{jtan^{-1}(2\omega)}$
 $\bigcirc \frac{\sqrt{5}}{2\sqrt{2}}e^{-jtan^{-1}(2\omega)}$
 $\bigcirc \frac{1}{2}$
 \bigcirc None of the provided solutions are correct.

5 pts

(True or False) The signal $x[n]=\sin(A\pi^2n)$ is periodic.

 \bigcirc True

⊖ False

Question 8	3 pts
Which of the functions below are equivalent to the function $\sum_{k=-\infty}^{-4} \delta[n+k]$?	
$\bigcirc \mu[n-4]$	
$igcap \mu[m{n}]$	
$\bigcirc \mu[n+4]$	
○ None of the above	

Question 9	3 pts
What is the angle (in radians) of the complex number $z=-3$?	
$\odot \pi$	
○ 0	
$\bigcirc 2\pi$	
○ The correct answer is not provided	

What is the list of values of $x[n]=e^{-j5\pi n}$ for n=0,1,2,3?

$$-1, 1, -1, 1$$

- \bigcirc 0, 1, -1, 0
- $\bigcirc\,$ None of the above

Question 11

3 pts

- If $x[n]=3\delta[n+1]+2\delta[n-2]+5e^{-n}\mu[n-1]$ what is the value of x[n] at n=0 ? $\odot+\infty$
- 0
 5
 The correct answer is not provided

Question 12

The lengths of two discrete time sequence $x_1\left[n ight]$ and of a sequence $x_1\left[n ight]st x_2\left[n ight]$ is	d $m{x_2}\left[m{n} ight]$ are 7 and 7 respectively. The maximum length

Question 13

4 pts

4 pts

Let $x[n] = \sin(\frac{1}{b}\pi n)$. Given that b = 19, determine the fundamental period of x[n].

5 pts

3 pts

Given the signal $x[n] = \mu[n-a]$ where a = 6, determine the moment that this signal changes from 0 to 1.

Question 15

3 pts

Given the system having Discrete Time Fourier Transform as shown below:

$$Y\left(e^{j\omega}
ight)+e^{-j\omega}Y\left(e^{j\omega}
ight)=X\left(e^{j\omega}
ight)+e^{Bj\omega}X\left(e^{j\omega}
ight)$$

Given that B=4, indicate if the system is causal using a (0,1) answer as indicated below.

Answer with a number [0,1] where:

1 = Yes the system is causal.

0 = No the system is not causal.

Question 16

4 pts

Consider a system with input $\boldsymbol{x}[\boldsymbol{n}]$ and output $\boldsymbol{y}[\boldsymbol{n}]$. The input-output relation for the system is defined by the following two properties:

1. y[n] - ay[n-1] = x[n]2. y[0] = -1

Answer with a number [0,1] where:

1 = Yes the system is linear and time invariant.

0 = No the system is not linear and time invariant.

Consider a system with input $\boldsymbol{x}[\boldsymbol{n}]$ and output $\boldsymbol{y}[\boldsymbol{n}]$. The input-output relation for the system is defined by the following two properties:

1.
$$y\left[n
ight]-By\left[n-1
ight]=Ax\left[n
ight]$$

2.
$$y[0] = -2$$

Given that B=-0.1 and A=-2, indicate if the system is stable using a (0,1) answer as indicated below.

Answer with a number [0,1] where:

1 = Yes the system is stable.

0 = No the system is not stable.

Question 194 ptsIf $x [n] = e^{-j\omega_0 n}$ then the DTFT of $x [n], X (e^{j\omega})$ is: $\bigcirc \delta(\omega - \omega_0)$ $\bigcirc \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$ $\bigcirc \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + \omega_0 + 2\pi k)$ \bigcirc None of the provided answers are correct.

If $x(t) = \cos(70\pi t)$ is sampled with a sampling period of $T = \frac{1}{70}$ and $X[k]$ is the 101-point DFT of $x[n]$, i.e., $x[n] \leftrightarrow X[k]$. What index, k , of the DFT is closest to the frequency of the input sinusoid $x[n]$?		
○ 0		
○ 48		
○ 52		
○ 50		

Question 21

5 pts

If $x\left(t ight)=\cos(300\pi t)$ is sampled with a sampling period of $T=rac{1}{150}$ seconds/sample, what is the equation for $x\left[n ight]$?	
O 1	

 $\bigcirc \cos(2n)$ $\bigcirc \cos(\pi n)$

 $\bigcirc\,$ none of the above

Question 22	3 pts
A system that aliases frequencies is LTI?	
⊖ True	
⊖ False	

Question 23	5 pts
Given the signal below	
$x(t) = 5cos(100\pi t) + 10cos(200\pi t) - 15cos(300\pi t)$	
which of the following sample rates is the lowest rate that also avoids aliasing?	

🔾 600 Hz

🔾 200 Hz

 \odot 300 π Hz

Question 24

4 pts

Indicate if the system $h[n] = 1^{n} u[n - (-1)]$ is stable.

Answer with a number [0,1] where:

1 = Yes the system is stable.

0 = No the system is not stable.

