Breadth Exam- Fall 2023

ECGR 4124

Quiz Instructions

Question 1

An LTI system has impulse response defined by $h[n]=\{5,-3,6\}$ for $n=\{0,1,2\}$.
Determine the output of the system, $y[n]$, when the input, $x[n]=A \delta[n]$ for $A=-1$.
Provide a single number as your answer which is the total of the values of the output, i.e., $\sum_{-\infty}^{\infty} y[n]$.
\square

What are the components one would typically need to construct a digital signal processing system that could take analog signals as input and also output the processed results as an analog signal?

(Choose all that apply)

ResistorCPUop ampanalog to digital converterdigital to analog converterinductorIf an input $x(t)=\sin (-3 \pi t)$ is sampled with a sampling frequency of $f_{s}=3$ samples $/ \mathrm{sec}$, what is the discrete frequency of the sampled sinusoidal signal in rad/sample?

Specify your answer with two decimal digits of accuracy.
\square

Question 4

Let $x[n]$ denote a sampled signal from a continuous sinusoidal signal $x(t)=\sin (2 \pi f t)$. For $f=2.7 \mathrm{~Hz}$, and a sampling interval of $T=9$ seconds/sample, what the value of $x[3]$?

Keep two decimal digits for result.

\square

How many signals listed below are periodic?
$x[n]=\sin \left(\frac{6 \pi}{7} n+1\right)$
$x[n]=\cos \left(\frac{n}{8}-\pi\right)$
$x[n]=\cos \left(\frac{\pi}{8} n-\frac{\pi}{3}\right)$
$x[n]=1$
Note: Constants DO repeat their values.
$\bigcirc 3$
1
0

4

If $z_{1}=1-j 2 \omega$ and $z_{2}=2+j 4 \omega$ simplify the ratio $\frac{z_{1}}{z_{2}^{*}}$ where $*$ denotes conjugation.

- $\frac{\sqrt{5}}{2 \sqrt{2}} e^{j \tan ^{-1}(2 \omega)}$
$\bigcirc \frac{\sqrt{5}}{2 \sqrt{2}} e^{-j \tan ^{-1}(2 \omega)}$
- $\frac{1}{2}$

None of the provided solutions are correct.

Question 7

(True or False) The signal $x[n]=\sin \left(A \pi^{2} n\right)$ is periodic.

O True

False

Question 8

Which of the functions below are equivalent to the function $\sum_{k=-\infty}^{-4} \delta[n+k]$?
$\bigcirc \mu[n-4]$
$\bigcirc \mu[n]$
○ $\mu[n+4]$
None of the above

Question 9

What is the angle (in radians) of the complex number $z=-3$?
$\bigcirc 0$
2π

Question 10

What is the list of values of $x[n]=e^{-j 5 \pi n}$ for $n=0,1,2,3$?
○ $1,-1,1,-1$

- $-1,1,-1,1$

○ $0,1,-1,0$None of the above

Question 11

If $x[n]=3 \delta[n+1]+2 \delta[n-2]+5 e^{-n} \mu[n-1]$ what is the value of $x[n]$ at $n=0$?
$\bigcirc+\infty$
$\bigcirc 0$
5
The correct answer is not provided

Question 12

The lengths of two discrete time sequence $x_{1}[n]$ and $x_{2}[n]$ are 7 and 7 respectively. The maximum length of a sequence $x_{1}[n] * x_{2}[n]$ is
\square

Question 13

Let $x[n]=\sin \left(\frac{1}{b} \pi n\right)$. Given that $b=19$, determine the fundamental period of $x[n]$.
\square

Question 14

Given the signal $x[n]=\mu[n-a]$ where $a=6$, determine the moment that this signal changes from 0 to 1 .
\square

Question 15

Given the system having Discrete Time Fourier Transform as shown below:

$$
Y\left(e^{j \omega}\right)+e^{-j \omega} Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right)+e^{B j \omega} X\left(e^{j \omega}\right)
$$

Given that $B=4$, indicate if the system is causal using a $(0,1)$ answer as indicated below.
Answer with a number [0,1] where:
1 = Yes the system is causal.
$0=$ No the system is not causal.
\square

Consider a system with input $x[n]$ and output $y[n]$. The input-output relation for the system is defined by the following two properties:

1. $y[n]-a y[n-1]=x[n]$
2. $y[0]=-1$

Answer with a number [0,1] where:

1 = Yes the system is linear and time invariant.
$0=$ No the system is not linear and time invariant.
\square

Consider a system with input $x[n]$ and output $y[n]$. The input-output relation for the system is defined by the following two properties:

1. $y[n]-B y[n-1]=A x[n]$
2. $y[0]=-2$

Given that $B=-0.1$ and $A=-2$, indicate if the system is stable using a $(0,1)$ answer as indicated below.
Answer with a number [0,1$]$ where:
$1=$ Yes the system is stable.
$0=$ No the system is not stable.
\square

If $X[25]=1-j$ is the value of the DFT at index $k=25$. What is the phase of response at $k=25$?
○ $\frac{\pi}{4}$
○ $\frac{7 \pi}{4}$
$\bigcirc \pi$None of the provided answers are correct.

Question 19

If $x[n]=e^{-j \omega_{0} n}$ then the DTFT of $x[n], X\left(e^{j \omega}\right)$ is:
$\bigcirc \delta\left(\omega-\omega_{0}\right)$
$\bigcirc \sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$
$\bigcirc \sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega+\omega_{0}+2 \pi k\right)$
None of the provided answers are correct.

If $x(t)=\cos (70 \pi t)$ is sampled with a sampling period of $T=\frac{1}{70}$ and $X[k]$ is the 101-point DFT of $x[n]$, i.e., $x[n] \leftrightarrow X[k]$. What index, k, of the DFT is closest to the frequency of the input sinusoid $x[n]$?

00
$\bigcirc 48$
○ 52
○ 50

Question 21

If $x(t)=\cos (300 \pi t)$ is sampled with a sampling period of $T=\frac{1}{150}$ seconds/sample, what is the equation for $x[n]$?

○ 1
$\bigcirc \cos (2 n)$
$\bigcirc \cos (\pi n)$
none of the above

Question 22

A system that aliases frequencies is LTI?
\bigcirc False

Question 23

Given the signal below

$$
x(t)=5 \cos (100 \pi t)+10 \cos (200 \pi t)-15 \cos (300 \pi t)
$$

which of the following sample rates is the lowest rate that also avoids aliasing?300 Hz600 Hz200 Hz$300 \pi \mathrm{~Hz}$

Question 24

Indicate if the system $h[n]=-1^{n} u[n-(-1)]$ is stable.
Answer with a number [0,1] where:
1 = Yes the system is stable.
$0=$ No the system is not stable.
\square

Calculate the output signal by convolving the system, $h[n]$, and the input, $x[n]$, as provided below:

$$
\begin{gathered}
x[n]=u[n] \\
h[n]=a^{n} u[n]
\end{gathered}
$$

where $a=0.2$.
Using your formula for the solution, determine the output at a specific sample index $n=3$ by calculating $y[3]$ at that sample index.

To obtain the result with the required accuracy, you should find the closed expression of $y[n]$ then substitute the value of n to it.

Specify your answer with two decimal digits of accuracy.

