\qquad

Electrical and Computer Engineering Fall 2023 BREADTH EXAM

Problem $1 \quad$ Engineering Mathematics \quad P1:Fourier-transform

Show all your work (derivations and calculations). Clearly indicate the question and part number for all your answers. Label all your plots

Formulas:
Integration by parts: $\int u d v=u v-\int v d u$.
Exponential Fourier Series: $x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0} t}$.
Fourier series coefficients: $a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t$.
Differentiation property: When a_{k} are the complex exponential Fourier series coefficients for $x(t)$, $j k \omega_{0} a_{k}$ are the complex exponential Fourier coefficients for $\frac{d x(t)}{d t}$.
Fourier transform: $X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t$.
Inverse Fourier transform: $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{j \omega t} d \omega$.
Parseval Equality: $\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega$.
Multiplication property: $s(t) p(t) \leftrightarrow \frac{1}{2 \pi} S(j \omega) * P(j \omega)$, where $*$ denotes the convolution operation.

1. A periodic signal $x(t)$ of period $T=4$ is defined over a period by

$$
x(t)= \begin{cases}0 & -2<t<-1 \\ 1 & -1<t<1 \\ 0 & 1<t<2\end{cases}
$$

(a) What is the value of fundamental frequency ω_{0} in $\mathrm{rad} / \mathrm{s}$?
(b) Compute the complex exponential Fourier series coefficients for $x_{1}(t)=\frac{d x(t)}{d t}$
(c) Compute the complex exponential Fourier series coefficients for $x(t)$ using your results from (b)

Control Number:

\qquad

Electrical and Computer Engineering Fall 2023 BREADTH EXAM

$\underline{\text { Problem 1 Engineering Mathematics } \quad \text { P1:Fourier-transform }}$
2. A continuous-time periodic signal $x(t)$ is real valued and has a fundamental period $T=4$. The nonzero complex exponential Fourier series coefficients for $x(t)$ are specified as

$$
a_{1}=a_{-1}=2, a_{3}=a_{-3}^{*}=4 j .
$$

Express $x(t)$ in the form

$$
x(t)=\sum_{k=0}^{\infty} A_{k} \cos \left(\omega_{k} t+\phi_{k}\right) .
$$

\qquad

Electrical and Computer Engineering Fall 2023 BREADTH EXAM

$\underline{\text { Problem 1 Engineering Mathematics } \quad \text { P1: Fourier-transform }}$
3. You are told that the spectrum of the signal $g(t)=\frac{\sin (A t)}{\pi t}$ is given by

$$
G(j \omega)= \begin{cases}1, & -A \leq \omega \leq A \\ 0, & \text { elsewhere }\end{cases}
$$

Now let

$$
h_{1}(t)=\left(\frac{\sin \left(\frac{\pi t}{2}\right)}{\pi t}\right)\left(\frac{\sin (\pi t)}{\pi t}\right) .
$$

(a) Compute the total energy E_{∞} of $g(t)$, where $E_{\infty}=\int_{-\infty}^{+\infty}|g(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|G(j \omega)|^{2} d \omega$.
(b) Determine the frequency response $H_{1}(j \omega)$ for $h_{1}(t)$; using the Fourier transform multiplication property. (The formula is given to you on the first page).
(c) Sketch the magnitude $\left|H_{1}(j \omega)\right|$.
(d) Let $h_{2}(t)=h_{1}(t) \cos (\pi t)$, determine the frequency response $H_{2}(j \omega)$ for $h_{2}(t)$. (Use the multiplication property given)
(e) Sketch the magnitude $\left|H_{2}(j \omega)\right|$.

