Show all your work (derivations and calculations). Clearly indicate the question and part number for all your answers. Label all your plots.

Formulas:
Integration by parts: \(\int u dv = uv - \int v du \).
Exponential Fourier Series: \(x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{j\omega_0 t} \).
Fourier series coefficients: \(a_k = \frac{1}{T} \int_{-T}^{T} x(t) e^{-j\omega_0 t} dt \).
Differentiation property: When \(a_k \) are the complex exponential Fourier series coefficients for \(x(t) \), \(jk\omega_0 a_k \) are the complex exponential Fourier coefficients for \(\frac{dx(t)}{dt} \).
Fourier transform: \(X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \).
Inverse Fourier transform: \(x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \).
Parseval Equality: \(\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega \).
Multiplication property: \(s(t)p(t) \leftrightarrow \frac{1}{2\pi} S(j\omega) * P(j\omega) \), where * denotes the convolution operation.

1. A periodic signal \(x(t) \) of period \(T = 4 \) is defined over a period by

\[
x(t) = \begin{cases}
0 & -2 < t < -1 \\
1 & -1 < t < 1 \\
0 & 1 < t < 2
\end{cases}
\]

(a) What is the value of fundamental frequency \(\omega_0 \) in rad/s?
(b) Compute the complex exponential Fourier series coefficients for \(x_1(t) = \frac{dx(t)}{dt} \)
(c) Compute the complex exponential Fourier series coefficients for \(x(t) \) using your results from (b)
2. A continuous-time periodic signal $x(t)$ is real valued and has a fundamental period $T = 4$. The nonzero complex exponential Fourier series coefficients for $x(t)$ are specified as

$$a_1 = a_{-1} = 2, \quad a_3 = a_{-3}^* = 4j.$$

Express $x(t)$ in the form

$$x(t) = \sum_{k=0}^{\infty} A_k \cos(\omega_k t + \phi_k).$$
3. You are told that the spectrum of the signal \(g(t) = \frac{\sin(At)}{\pi t} \) is given by

\[
G(j\omega) = \begin{cases}
1, & -A \leq \omega \leq A \\
0, & \text{elsewhere.}
\end{cases}
\]

Now let

\[
h_1(t) = \left(\frac{\sin(\frac{\pi t}{2})}{\pi t} \right) \left(\frac{\sin(\pi t)}{\pi t} \right).
\]

(a) Compute the total energy \(E_\infty \) of \(g(t) \), where

\[
E_\infty = \int_{-\infty}^{+\infty} |g(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |G(j\omega)|^2 \, d\omega.
\]

(b) Determine the frequency response \(H_1(j\omega) \) for \(h_1(t) \); using the Fourier transform multiplication property. (The formula is given to you on the first page).

(c) Sketch the magnitude \(|H_1(j\omega)| \).

(d) Let \(h_2(t) = h_1(t) \cos(\pi t) \), determine the frequency response \(H_2(j\omega) \) for \(h_2(t) \). (Use the multiplication property given)

(e) Sketch the magnitude \(|H_2(j\omega)| \).