Electrical and Computer Engineering Control Number: Fall 2023 BREADTH EXAM

Problem 1

Engineering Mathematics

P2: The Z-transform

X(z) denotes z-transform of x[n]

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

 $X(\omega)$ denotes the DTFT of x[n]

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

u[n] is the unit step, $\delta[n]$ is the unit sample

ω denotes frequency in rad/sample

Circle the Best Answer

Show All Work Even For Multiple Choice

- 1. The right-sided sequence h(n) with z-transform $H(z) = \frac{5z-1}{z^2+4z+4}$ is BIBO stable.
 - a) True

- b) False
- 2. If a filter has $H(z) = \frac{z^2 + 2z 2}{4z^2 + 1}$; $|z| > 5^{-1/2}$, then the dc response of the filter at $\omega = 0$ is
 - a) 0
- b) 1/5
- c) 1/4
- d) 1/3
- e) none above
- 3. The ROC 0.2 < |z| < 0.5 could be associated with a BIBO stable 2-sided sequence.
 - a) True

- b) False
- 4. If $H(z) = \frac{z^2 z/3 1/2}{4z^2 1}$, then the poles of H(z) are at z=
 - a) j/4, -j/4
- b) 1/2, -1/2 c) j/2, -j/2
- d) none above
- 5. One of the zeroes of the z-transform $H(z) = 1 + z^4$ is at z =
 - a) $e^{j\pi/2}$
- b) $e^{j5\pi/8}$
- c) $e^{-j5\pi/8}$
- d) $e^{j5\pi/4}$
- e) none above

- 6. The z-transform of h[n]= δ [n-1] 4 δ [n-3] is H(z) =
 - a) $1 + 4z^{-3}$; |z| > 0.25

b) $\frac{z^2-4}{z^3}$; |z|>0

c) $\frac{z^{-1}-4z^{-3}}{z^{-1}}$; |z|>0.125

- d) none above
- 7. The z-transform of $h[n] = (1/2)^n u[n]$ is H(z) =

 - a) $\frac{z}{z-1/2}$; |z| > 1/2 b) $\frac{2}{z-1/2}$; |z| > 1/2 c) $\frac{1}{2z-1}$; |z| > 1/2 d) none above
- 8. The system with z-transform $H(z) = \frac{50(z+1)(z-1)}{100z^2+1}$; |z| > 0.1 would be best described as
 - a) lowpass
- b) highpass
- c) bandpass
- 9. If a filter has $H(z) = \frac{z^2 2z 1.9}{z^3 + 1/8}$ and ROC |z|>1/2, then the first 3 points of h[n]=
 - a) {1, -2, 1.9} b) {1, -2.0, 0} c) {0, 1, -2.0}
- d) none above

- 10. The z-transform of u[n-1] u[n-3] is
 - a) $1 2z^{-1} 3z^{-2}$; |z| > 1/5
- b) $z^{-1} + z^{-2}$; |z| > 0
- c) $1 z^{-1} z^{-2}$; |z| > 0

- d) none above
- 11. If a system has $H(z) = \frac{4z-1/5}{4z^2-1}$ and ROC |z|>1/2 then, then h[1] =
 - a) 0
- b) 4/5
- c) 1
- d) 5/4 e) none above

Control Number:	

12. If a filter has impulse response h[n]= u[n-1] - u[n-5], the filter response at frequency $\omega = \pi$ is $H(\omega)|_{\omega=\pi} =$

- a) -1 b) e^{-j4}
- c) 1
- d) j
- e) none above

13. If a causal filter has $H(z) = \frac{3z^2 - z + 2}{5z^2 - z + 3}$ then the response of the filter at $\omega = \pi$ is

- a) 0
- b) 4/7
- c) 3/5
- d) 2/3
- e) none above

14. If $H(z) = \frac{5}{z+1/2} + \frac{1}{z-1/2}$; |z|>1/2, then the zero of H(z) is at z=

- a) 1/3
- b) 1/4
- c) 1/2
- d) 1

e) none above

15. If $H(z) = \frac{4z}{2z+1}$; |z| > 1/2, then h[n]=

- a) (1/8)ⁿ u[n]
- b) 4(-1/2)ⁿ u[n]
- c) $2(-1/2)^n$ u[n]
- d) 2(1/2)ⁿ u[n]
- e) none above

16. If a filter has impulse response $h[n]=(-1/5)^{n-2}u[n-2]$, the dc response of the filter is $H(\omega)|_{\omega=0}=$

- a) 2/5
- b) 5/6
- c) 4/5 d) $0.2e^{-j2\omega}$
- e) none above

17. A filter with $H(z) = \frac{z^2+4z+1}{z^2+4}$; with ROC |z|<2 is

- a) unstable
- b) left-sided c) two-sided
- d) causal
- e) none above

18. If $Y(z)=1+z^{-1}$; |z|>0, and $X(z)=1+z^{-2}$; |z|>0, then the convolution x[n]*y[n]=

a)
$$\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$
 b) $\delta[n] + 2\delta[n-1] + \delta[n-2]$ c) $\delta[n-1] + \delta[n-2]$ d) none above

b)
$$\delta[n] + 2\delta[n-1] + \delta[n-2]$$

c)
$$\delta[n-1] + \delta[n-2]$$

Control Number: _____

For the following questions:

$$H(z) = \frac{z^2 + 1/16}{z^2 + z/4 - 1/8}$$

- 19. Sketch the poles and zeroes in the figure above.
- 20. Assuming a causal system, sketch the region of convergence in the figure above.

Show your work for the 2 above problems in the space below.